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Results of two-dimensional numerical studies of turbulence that arises at the interface of two 
flows of poorly compressible gases are described. The results were obtained using a MAKh 
software system. The interrelation between spatial and time problems on the development of a 
turbulent zone induced by shear instability is analyzed. A constant that characterizes the degree 
of turbulent shear mixing is calculated. The effect of the density difference of the mixing fluids 
on the growth rate of the turbulence zone is studied. For all density differences considered, the 
coefficient of heterogeneity of the resultant mixture is evaluated. 

P r o b l e m  S t a t e m e n t .  When two incompressible semi-infinite s t reams of a fluid (or a gas) move in 
one direction with different velocities U1 and U2, turbulence develops at the interface between them. This 

motion is self-similar; therefore, the thickness of the turbulent  mixing zone can be represented as 

L = 0.5c~.f(pl/p2)IU1 - U21t, (1) 

where c~, is a constant determined experimentally~ t is the t ime of interaction of the two flows, and f (Pl/P2) 
is a dimensionless function that depends oil the density difference and normalized so that  f (1 )  = 1. The  

difference IU1 - U21 is an invariant of the Galilean transform, and the flow pat te rn  remains unchanged on 
interchanging the two flow velocities: U1 ~-~ [72. This interchanging is equivalent to the case where the 

densities are interchanged: Pl ~-~ P2. Hence, the function f ( x )  possesses the following property:  

f ( x )  = f ( 1 / x ) .  (2) 

Since any experimental  s tudy in such a t ime s ta tement  of the problem of interest seems to be difficult to 
perform, the shear instability is usually studied within the following spatial  formulation. Two incompressible 

fluids (or two gases) with densities Pl and P2 are considered. These fluids move along the semiplane y = 0, 
x < 0 tha t  separates them, with velocities U1 and U2, respectively (UI > U2) (Fig.l).  We define the Atwood 

number  as A = (pl - P2)/(Pl + P2). In the case under consideration, this number can be either positive or 
negative. At the point x = 0, the fluids are in contact,  while at x > 0, turbulence develops at the interface 

(region I in Fig. 1). 
The  spatial problem can be subst i tuted with a t ime one using the relation x = Uot. The physical 

meaning of the velocity Uo becomes clear from the following consideration. If, at t = 0, the observer is 

located at  the point x --- 0, y = 0, and, afterwards, he moves along the x-axis with velocity U0, then, for 
him, the development of the mixing zone is described by relation (1). Since~ at a t ime t > 0, the observer is 

s i tuated at the point x = Uot, the width of the mixing zone can be represented as 

L = 0.5auf(pl/P2)lU1 - U 2 1 ( x / U o ) .  (3) 
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Fig. 1. Scheme of the flow of two fluid streams 
moving with different velocities. 

Some methods for determining the effective velocity U0 were proposed by Brown and Roshko [1] who 
considered the following expressions: 

Uo = ( vl  + u2 ), Uo = 5 ( vl  + u2 ) _ l  + g T u2 j , 

(4) 
1 [72)(1 8 U1 - U2"~2 v~ 5(vl + ) 

The velocity U0 was obtained as the velocity of the streamline with the density p = (Pl + p2)/2. 
Yakovlevskii [2] proposed the relation 

U0 = (UlPl + U2p2)/(Pl + P2). (5) 

Abramovich [3] indicated that, for a large difference in density of the mixing substances, the effective 
velocity is given by the integral relation 

Y2 Y2 

/ 
Yl Yl 

where Yl and y2 are the boundaries of the mixing zone. 
Let us study now relations (4)-(6) for the effective velocity U0 by comparing the results of two exper- 

iments similar to that shown in Fig. 1, where the Atwood number acquires values with the opposite signs. 
To do this, we may interchange the values of two densities, Pl ~ P2, being assumed different (Pl # P2)- In 
this case, property (2) is valid, and hence, the following relation holds: 

dL dL U02 

U01" 

If, from these experiments, an expression for U0 is found, then, to determine c~u, it will suffice to 
perform a third experiment for Pl = P2, from which we obtain au = 2(dL/dx)3Uo3/IU1 - U2]. Having the 
expression for U0 and the value of au at our disposal, from the results of the above experiments and additional 
tests with different Pl/p2 ratios, we can determine the function f (Pl /Pe) .  

Thus, the following basic characteristics of turbulent shear mixing can be obtained: 
- -  the characteristic velocity U0 that interrelates the spatial and time problems; 
- -  the constant a~ that characterizes the degree of turbulent mixing; 

- -  the function f (Pl /P2) that determines the relation between the width of the turbulent shear mixing 
zone and the density difference. 

Numerical simulation was performed using a MAKh software system [4], which permits modeling of 
vortex flows with considerable deformations of the interfaces between the substances. 
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TABLE 1 

Numerical experiment Pl, kg/m 3 

1.1 
1.1 
1.1 

P2, kg/m a 

7.7 
7.7 
1.1 

Ul, m/sec 

1.30 
9.15 
1.30 

U2, m/see 

9.15 
1.30 

9.15 

A 

0.75 
-0.75 

0 

I n i t i a l  D a t a .  N u m e r i c a l  R e s u l t s .  A planar flow of two poorly compressible gases was set in 

a rectangular  computat ional  domain divided by the interface y = 0 into two s t ra ta  (see Fig. 1). The 

paramete rs  of two s treams are listed in Table 1. The  substances are described by the equation of s ta te  for 

an isothermal gas Pi = Cg(pi - Poi), where P/ is the part ial  pressure of the i th component  of the mixture,  

Co = 310 m/sec  is the velocity of sound, Pi and Poi are the densities of the disturbed and undisturbed flows, 
and the subscript  i denotes a mixture component.  The  computat ional  domain was divided into two s t ra ta  
by the line y = 0. The  upper  and lower boundaries of the system were assumed to be rigid walls, and the left 

and right edges were stat ionary Eulerian boundaries. At the Eulerian stage of the calculation procedure, a 

constant  inflow of a substance in each s t ra tum was specified at the left boundary, the substance leaving the 

computa t ional  domain through the right boundary. At the Lagrangian stage, a constant normal velocity was 
set at the left boundary  of each stream, and the normal velocity 

Un = ClU1 + c2U2 (8) 

was specified at the right boundary. Here ct and c2 are the mass concentrations of the first and second 
substances in interfacial computat ional  cells, and U1 and U2 are the velocities of the substances at the inflow 
boundary.  Several types of boundary conditions at the right boundary  were considered. All of them, to 

one extent or another,  affect the development of the turbulent  ,nixing zone near the right boundary  of the 

computa t ional  domain. Condition (8) was adopted as exerting the smallest effect. 
A rigid wall 0.5 m long in the left par t  of the computat ional  domain and a contact interface over 

the remaining section were adopted as the boundary  conditions at the interface between the strata.  The  
calculation was carried out on a square mesh with a step Ax = Ay = 0.01 m. At the initial time, random 
disturbances with the highest ampli tude of 0.5Ay were set at the interface between two streams, then the 

interface was calculated as a Lagrangian line up to the t ime t = 0.1 see when the width of the dis turbed 
zone increased approximately  to 2Ay. From this t ime on, the calculations were conducted on a s ta t ionary  

Eulerian mesh with allowance for overflow of the substances through the interface between the strata.  The  
development of the mixing zone of two s treams was modeled with due regard for their concentrations. To 

simulate the mixture of two substances, the condition of mechanical equilibrium of the components was used. 
After the t ime t = 0.1 see, "vibrator" 1 was installed at a distance of 0.5 m from the left boundary  of the 

computat ional  domain, at the interface between the flows (see Fig. 1). At this point, the vertical velocity 
was assumed to vary according to the law V = V0 sin (a~t), where 110 = 2 m/see  and a: = 400 rad/sec.  The  

calculations were continued until a developed region of turbulent  mixing was formed. The  total  t ime covered 

by the calculations was about  0.8 see. 

Figure 2 shows instantaneous profiles of the volume concentration of the light component  of the mixture.  
Following [1], the self-similar slope d L / d x  = Bo was obtained by averaging over four times with the t ime 

interval A t  = 0.025 see. 
In processing the numerical results, for each column of computat ional  cells, we determined the width of 

the mixing zone using the conditions f l  (Yupp) : 0.99 and f l  (Ylow) = 0.01. Here f l  is the volume concentration 
of the first substance and Ylow and Yupp a re  the lower and upper  boundaries of the mixing zone. The  resultant  

dependences Ylow(xi) and Yupp(Xi), where i is the subscript  denoting the column number,  were approximated  
by straight lines which were built using the condition of the least s tandard  deviation. 

The  values of the self-similar slope d L / d x  = Bo and its s tandard deviation AB0 are listed in Table 2. 
To eliminate the effect caused by non-self-similar sections of the mixing zone located near the "vibrator" and 
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Fig. 2. Distribution of volume concentration: (a) t = 0.75 sec and A -- 
-0.75; (b) t = 0.75 sec and A -- 0; (c) t = 0.6 sec and A = 0.75. 

TABLE 2 

Numerical experiment 

0.19 0.02 0.22 0.75 
0.37 0.04 0.41 -0.75 
0.31 0.02 0.29 0 
0.21 0.02 0.22 0.75 

near the right boundary,  it was necessary to reject some computat ional  columns at the boundaries  in da ta  

processing. The  corresponding displacements of the left and right boundaries (A L and AR) were 20 and 10 
nodal points, respectively. The  values of A L and AR were chosen with allowance for the condition of the 

least ratio of the s tandard  deviation to the mean value of B0. To check the effect of initial conditions and 

mesh steps Ax and Ay  on the values obtained for the  self-similar slope B0, we performed another,  fourth 
simulation for A = 0.75 with the smallest width of the turbulent  zone; therefore, the initial conditions could 

exert  the greatest  effect on the calculation results. The  change in the self-similar slope caused by a twofold 

decrease in bo th  the mesh step and the ampl i tude  of the "vibrator 's"  oscillations was found to be well within 

the error of da ta  processing (see Table 2). 
According to (7), the ratio of the effective velocities for the case where the Atwood number  acquires 
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Fig. 3. Profiles of the excess densities (Ap) and velocities (AU) for A = -0.75 (a) and 0.75 (b): solid 
curves are profiles obtained in the present simulations and dashed curves are profiles predicted by the 
Prandtl theory [3, 5]; curves 1 and 2 refer to density and velocity, respectively. 

TABLE 3 

f 
A J AU d~ 

-0.75 0.55 
0 0.50 
0.75 0.20 

l a p  d~ 

0.72 

0.34 

AUAp d~ Uo/U,.~. 

0.49 3.0 
- -  4.0 

0.14 5.8 

values with the opposite signs is 

Um/Uo2 = Bo2/Bol = 1.9 =k 0.2, /301 = 0.20 • 0.02. 

Now we s tudy relations (4)-(6) for the effective velocity U0 from the viewpoint of their compliance with 

numerical results. Formulas (4) are independent of the density difference, and hence, we have Urn/U02 = 1. 

From (5), it follows that  Uol/Uo2 = 3.58. In view of the dependence Uo = Uo((pl + p2)/2), we have 
Um/Uo2 -- 3.7. From (6), it follows that  Um/Uos = 1.9, which is in good agreement with numerical results. 

To calculate the integral velocity and the velocity at the dividing streamline, we used the profiles of 

the excess velocity AU(~) = (U(~) - U2)/(U1 - -  U2) and density Ap(~) = (p(~) - p(O))/(p(1) - p(0)), where 

= (Y - Yupp)/(Ylow - Yupp)- The initial velocity and density profiles were recalculated depending on the 
coordinate ~ for all values of x on the self-similar section, and then these profiles were averaged over the 
x coordinate.  The resultant  profiles AU(( )  and Ap(~) were found to agree well with those predicted by 
the Prandt l  theory [3, 5], which is i l lustrated by Fig. 3. The theoretical profile AU(~) is shown in the ~' 

coordinates: A U ( - 1 )  = 0 and AU(1) = 1. In all cases, the turbulent Schmidt number  Sc = 0.5 was adopted.  

The  following specific feature of these dependences is observed: the profile AU(~) is contracted and shifted 

relative to the profile Ap(~) with a contraction factor S --- 0.64-0.70. The  lat ter  does not depend on the 
density difference. This conclusion is in line with a similar dependence S = (2/3) s-ssc given by the Prandt l  

theory. 
The  effective velocity (6) can be writ ten as 

Uo : U2+(Ul - U2) ( /AUd~q-  (~21 - 1 ) / / k U , ~ , p d ~ ) / ( l +  ( p ~ - X ) / / X p d ~ ) .  

In the limiting cases, as the ratio Pl/P2 tends to zero or to infinity, the function Uo --* (Ulpl + 

U2p2)/(pl + P2) and takes the values Us and U1, respectively. The calculated ratios Uo/Umin are listed in 
Table 3. In calculating Uo/Umin for A = 0.75, we took the value at the edge of the turbulent mixing zone 

equal to U2 + 0.9(U1 - Us) as U0. 
In view of (3), we have au f (p l / p s )  = 2BoUo/[U1 - Us[. For A = -0 .75,  0, and 0.75, we have 
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auf(pl/p2) = 0.37, 0.41, and 0.39, i.e., within the accuracy of the calculation error, au f (A )  = const -- a~. 
In other  words, in the range of Atwood numbers A = -0.75-0.75,  no effect of density difference is observed. 

Thus, the results of the present numerical s tudy can be described by the relation L = (au/2)]U1 - 
L L 

U2[(x /Uo) ,whereau=O.39•  The obtained value of the constant au that  

0 0 
characterizes the degree of turbulent  mixing is in agreement with the value a .  = 0.38 obtained by Brown 

and Roshko [1] from the flow pat terns  determined experimentally. 
H e t e r o g e n e i t y  Coe f f i c i en t  in t h e  T u r b u l e n t  S h e a r  M i x i n g  Zo n e .  In [6, 7], the coefficient 

of heterogeneity of the mixture in the turbulent  mixing zone caused by the Rayleigh-Taylor instability, 

0(~) = (fif2)/((fl)(f2)) = 1 - k h, was estimated, as well as its mean value in the mixing zone 

L L L L 

O = / ( f i f 2 ) d y /  / ( f l ) ( f2 )  dy - - 1 -  / kh(fi)(f2) dy / / ( f i ) ( f2 )  dy. 
0 0 0 0 

Here f l  and f2 are the volume concentrations of the substances, k h = (f~f~)/((fi)(f2)) is the value of the 
heterogeneity coefficient at a point, the brackets denote averaging in the plane normal to the acceleration 
vector, and the prime indicates deviation of a quant i ty  from its average value (i.e., fluctuation). 

By analogy with [6], we calculated the heterogeneity coefficient in the turbulent shear mixing zone 
for the profiles of volume concentration. The fluctuations of the volume concentration were averaged in the 
same manner  as was done in finding self-similar profiles of the excess density and velocity. The values of the 
volume concentration were recalculated depending on the self-similar coordinate ~ = y/L(x) and averaged 

along the current value of ~. 
The values of the heterogeneity coefficient found for A -- -0 .75,  0, and 0.75 were kh = 0.33, 0.23, 

and 0.30, respectively. The value of the heterogeneity coefficient estimated from the experimental data  of 

Bernal and Roshko [8] on the fluctuating volume concentration is k~h = 0.3 for A = -0 .75.  The  good 
agreement between the results of the present two-dimensional numerical studies and those of three-dimensional 
experiments [8] on determination of the degree of heterogeneity of a turbulent mixture is worth noting. 

In [6, 7], it was found that  the self-similar heterogeneity coefficient is k h ~ 0.2 for pi/p2 = 1-20 in the 
case of gravitational mixing. The greater degree of heterogeneity in the case of shear mixing is presumably 
caused by the more expressed vortex s tructure formed (see Fig. 2). The  origination of a clear vortex structure 

during shear mixing was also reported in [1, 8]. 
C o n c l u s i o n s .  A series of experiments is proposed that  permits determination of the main character- 

istics of turbulent  shear mixing. 
Results of numerical simulation are described, in which the divergence of the turbulent zone dL/dx 

for the velocity and density ratios Ui/U2 = 7 and Pl/P2 = 1/7, 1, and 7 was observed. The results of two- 
dimensional numerical studies were found to agree well with experimental da ta  [1, 8]. Self-similar profiles of 

the excess velocity AU --- (U - U2)/(Ui - U2) and density Ap = (p - P2)/(Pi -- P2) predicted by the Prandt l  

theory [3, 5] were obtained. 

The expression for the effective velocity Uo = / pU d y /  / pdy proposed by Abramovich [3] is shown 
L L 

to be in agreement with the numerical results obtained. 
The constant au that  characterizes the degree of turbulent mixing is evaluated. Its magnitude was 

found to equal a~ = 0.39 • 0.04. 
The divergence of the turbulence zone was found to be independent of the density difference in the 

range of Atwood numbers A = -0.75-0.75.  For the above range, we have f(Pl/P2) = 1. 
For all the problems considered, the heterogeneity coefficient of the obtained mixture was calculated. 

For self-similar problems of shear and gravity turbulence, the mean heterogeneity coefficient over the mixing 
zone was found to be somewhat higher for the case of shear instability than that  for gravity turbulence [6-8]. 
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